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Revenue Management in a Dynamic
Network Environment

Dimitris Bertsimas • Ioana Popescu
Sloan School of Management, MIT, Cambridge, Massachusetts 02139

INSEAD, Fontainebleau Cedex 77305, France
dbertsim@mit.edu • ioana.popescu@insead.edu

We investigate dynamic policies for allocating scarce inventory to stochastic demand for
multiple fare classes, in a network environment so as to maximize total expected rev-

enues. Typical applications include sequential reservations for an airline network, hotel, or
car rental service. We propose and analyze a new algorithm based on approximate dynamic
programming, both theoretically and computationally. This algorithm uses adaptive, nonad-
ditive bid prices from a linear programming relaxation. We provide computational results
that give insight into the performance of the new algorithm and the widely used bid-price
control, for several networks and demand scenarios. We extend the proposed algorithm to
handle cancellations and no-shows by incorporating oversales decisions in the underlying
linear programming formulation. We report encouraging computational results that show
that the new algorithm leads to higher revenues and more robust performance than bid-price
control.

Introduction
Capacity constrained service industries, such as trans-
portation, tourism, entertainment, media, and internet
providers are constantly faced with the problem of
intelligently allocating their limited, perishable inven-
tories to demand from different market segments,
with the objective of maximizing total revenues. Rev-
enue management is concerned with the theory and
practice underlying this type of problem. Following
airline deregulation, revenue management techniques
have had an important impact on the development
of the industry, providing up to 4%–10% increases
in company revenues (Fuchs 1987). For example, in
1997, American Airlines collected one billion dollars
by implementing revenue management, representing
most of the company’s profit (Cook 1998).

Optimization techniques have been essential in the
development of revenue management tools, particu-
larly for seat allocation models. In this research, we
are interested in investigating the design of dynamic

policies for allocating inventory to correlated, stochas-
tic demand for multiple classes, in a network environ-
ment. Specifically, we design a decision support tool,
based on stochastic and dynamic optimization tech-
niques, that at each point in time accepts or rejects a
reservation request, based on the currently available
inventory, past sales and future potential demand, so
as to maximize total expected revenues.

Problem Definition
The main problem we address in this paper is as fol-
lows. We are given an airline (hotel, car rental) net-
work composed of l legs (pairs of consecutive days
for hotels, car rentals), which are used to serve a total
of m demand classes. The initial inventory is given by
a vector N = �N1� � � � �Nl� of leg capacities. The net-
work is described by a l×m matrix A and a m-vector
R = �R1� � � � �Rm�: Rj is the fare category of class j ,
which utilizes aij units of resource (leg) i. In this way,
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a demand class j is defined by its itinerary Aj (a col-
umn of matrix A) and its fare category Rj . In an airline
network without group discounts, A is a 0–1 matrix
which may contain repeated columns for each fare
class on a given itinerary. To account for special group
fares, integer multiples of the itinerary-incidence vec-
tor are allowed.

For example, consider a very simple network cor-
responding to a weekend in a hotel: There are three
nodes Fri, Sat, Sun and l = 2 legs (1) Fri–Sat and
(2) Sat–Sun with total capacities N = �N1�N2�. Sup-
pose there is demand for all types of stays, i.e.,
“itineraries:” (1) Fri–Sat, (2) Sat–Sun, and (3) Fri–Sat–
Sun, with two (high and low) fare classes for each type.
Moreover, suppose there are discounts for groups of
size k1 = 10 for (1) Fri–Sat night stays, at a rate of R�10�

1

per group, that is a total of m = 7 classes. The leg-
class incidence matrix, together with the correspond-
ing fare structure R, is given by:

(
R
A

)
=


Rh1 Rl1 Rh2 Rl2 Rh3 Rl3 R

�10�
1

1 1 0 0 1 1 10

0 0 1 1 1 1 0

 �
We assume a finite booking horizon of length T ,

with the time line sufficiently discretized so as to
allow at most one request (reservation or cancellation)
per time period almost surely (a.s.). Time is counted
backwards: Time t = T is the beginning of the book-
ing horizon and time t = 0 is the end of the reserva-
tion period, where the no-shows are being counted.
Customers who do not consume their reservations get
full, partial, or no refund, depending on their fare
class. If at the end of the horizon, the inventory is
oversold, at time t = −1 redistribution decisions are
being made. These can be class upgrades or customer
bumping, in which case companies pay overbooking
penalties. For the case of hotels and car rentals, an
infinite time horizon could be more appropriate; how-
ever, one can decompose the problem in fixed length
time periods (one month, one year, etc.).

The demand (to come) process at time t is denoted
by �t , and ��t represents the corresponding ran-
dom vector of cumulative demands. That is, ��t

j is a
random variable representing the number of class j
requests to come from time t until departure (order

does not matter). Usually, we have partial information
about the demand process, which might consist of the
expected demand to come Dt = E���t�, and possibly
other type of information available from forecasting
tools, such as cancellation or no-show probabilities.

The state of the system S is given by the time t
(t periods to departure) and the sales-to-date record
s = �s1� � � � � sm� for each demand class. If cancellations
and no-shows are not allowed, then it is sufficient to
define the state based on the remaining inventory n =
�n1� � � � �nl�. A common practice is to use the latter
model and account for cancellations and no shows by
incorporating a virtual increase, called overbooking
pads, in the initial capacity definition.

The general stochastic, dynamic inventory control
problem for network revenue management (NRM)
can thus be stated as follows: At time t, and given
that the state of the network is S, should we accept
or reject a new class j request? The overall objective
is to maximize total expected revenues.

The decision to accept or reject determines an
admission control policy, which is in general a func-
tion of the current network configuration (s or n),
the time-to-go t, the currently requested fare Rj , as
well as partial information from demand forecasts. If
we accept the request, the new state becomes �s +
kj · ej � t− 1�, where kj is the size of the class j group
request, and ej is the jth unit vector; when can-
cellations are not allowed, the state of the network
�n� t� becomes simply �n − Aj � t�. If the request is
rejected, only the time component of the state vector
is changed to t−1.

In reality, the control policy has an impact on
the demand process, because customer choice may
depend on the opportunity set. Capturing and quan-
tifying this type of feedback phenomenon is a sub-
tle task that goes beyond the scope of this work. We
will thus make the simplifying assumption that the
demand process is independent of the control policy.

Notation
We will use the following notation throughout the
paper. Vectors will be denoted in bold, and random
variables and processes in calygrahic style.
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Time:
T = length of time horizon (number of time peri-

ods);
t = time periods left until departure (count-down).

Network:
l = number of legs in the network;
m = number of classes (itineraries with fare cate-

gories);
N = total initial network capacity (l-vector);
A = leg-class incidence �l×m�-matrix;
aij = quantity of resource i utilized by bundle j .

Sales and inventory:
n = remaining inventory (l-vector);
s = sales to date vector (m-vector);
stj = the number of itineraries sold to class j until

time t;
soj = the number of class j itineraries overbooked at

departure.
Fares, refunds, and penalties:
Rj = revenue collected for one class j sold;
Rcj = the refund per class j cancellation;
Rnsj = the refund per class j no-show;
Cj = the overbooking penalty per demand class j .

Demand:
ptj = probability of request for class j at time t;
pcj
t = the probability of a class j cancellation occur-

ring at time t;
pt0 = the probability of no request (reservation or

cancellation) at time t;
pnsj = the probability that a class j reservation will

not show up;
�t = demand (to come) process (m-dimensional);
��t = aggregate demand (to come) distribution

(m-dimensional);
Dt = E���t� = expected aggregate demand to come

(m-dimensional);
� = the cancellation process, adapted to the sales

history (not a decision);
�� = the no-show distribution (adapted to final

sales, adjusted for cancellations).
We will use the operator �x�+ = max�x�0�, for

x ∈ R, which naturally extends for vectors: �x�+ =
��x1�

+� � � � � �xn�+� for x = �x1� � � � � xn� ∈ Rn.

Contributions
In this paper, we evaluate from different perspectives
several policies for solving the dynamic and stochastic

NRM problem. To compare these different policies,
we provide structural and computational results.

The most popular technique developed in the cur-
rent literature is an additive bid-pricing approach.
These are mechanisms whereby the opportunity cost
of each itinerary is estimated as the sum of the
shadow prices of the incident legs, obtained from a
linear programming formulation of the problem (see
Formulation (2) in §2.2). However, there are two obvi-
ous drawbacks to additive bid prices:

(a) They are not well defined if there are multiple
dual solutions.

(b) They are restrictive in their way of taking into
account bundles by their predefined additive struc-
ture. In particular, they do not account for changes of
a dual basis in response to accepting large-group and
multileg itinerary requests.

The contributions of this paper are as follows:
(1) We propose an efficient control policy, that is

well defined if there are multiple dual solutions,
and does not have an additive structure. The pro-
posed control policy, which we call certainty equiva-
lent control (CEC), belongs in the class of approximate
dynamic programming mechanisms (see Bertsekas
and Tsitsiklis 1998), in which the cost-to-go function is
approximated by the value of a linear programming
(LP) relaxation. We remark that this LP is equivalent
to a network flow problem in the case of origin-
destination (OD) demands or linear networks (where
nodes can be ordered so that the arcs are pairs of con-
secutive nodes �i� i+1�� i = 1� � � � � l).

(2) We provide structural properties that com-
pare the behavior of the proposed CEC policy with
the additive bid-price approach. These results offer
insight into the behavior of both methods.

(3) We propose several algorithmic improvements
of the CEC policy based on approximate dynamic
programming.

(4) We provide computational results that give
insight into the performance of these algorithms and
several variations, for different networks and demand
scenarios. We observe that the CEC algorithm per-
forms very well in practice, giving results that are
very close to optimum. For high load factors, we
observe an average 5%–10% improvement over exist-
ing policies (additive bid pricing). We describe and
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simulate extensions of this algorithm that result in sig-
nificantly higher improvements (up to 20%). Interest-
ingly, the CEC policy appears to be significantly more
robust to noise and bias in the demand forecast.

(5) We extend these algorithms to handle cancel-
lations and no-shows by incorporating overbooking
control in the underlying mathematical programming
formulation. This extension preserves several struc-
tural properties. We report computational results that
show that the proposed algorithm improves upon the
performance of the bid-price control policy.

Structure
The remainder of the paper is organized as follows: In
the next section, we present an overview of the litera-
ture. Section 2 describes several (dynamic, stochastic,
linear, and network flow) models and formulations
for the NRM problem and evaluates the relationships
between them. Section 3 presents efficient algorithms
for the NRM problem based on ideas from approxi-
mate dynamic programming. In §4, we present struc-
tural properties for the proposed CEC policy and
contrast them with additive bid pricing. In §5, we
extend our model and algorithms to handle cancella-
tions, no-shows, and overbooking. Finally, in §6, we
present computational results. The last section sum-
marizes our conclusions.

1. Literature Review
and Positioning

The NRM problem can be viewed as a particular
instance of the general class of perishable asset rev-
enue management problems (PARM). Initial devel-
opments in static single leg revenue management
are due to Littlewood (1972), followed by Simpson
(1989) and Belobaba (1987), who proposed a subop-
timal policy for computing protection levels based
on expected marginal seat revenues (EMSR). Curry
(1989), Wollmer (1992), and Brumelle and McGill
(1993), derive the optimal solution for the single leg
static model. Robinson (1995) proposes an extension
that handles nonmonotonic fare classes.

A characterization of the optimal dynamic policy
based on a threshold time property is due to Diamond

and Stone (1991). An analogous discrete time solu-
tion is provided by Lee and Hersh (1993), who
also provide a method for estimating arrival rates.
Subramanian et al. (1999) propose a dynamic pro-
gramming model that handles cancellations and over-
booking, by analogy to a problem in the optimal
control of admission in a queueing system.

A natural, but much harder question is to deter-
mine which of the single leg results can be extended
to network (multiproduct) settings, and how. A major
conceptual advance in the study and practice of net-
work revenue management was introduced by bid-
price control. These are additive, leg-based shadow
prices used to approximate the opportunity cost of
itinerary capacity. The concept was proposed by
Simpson (1989), and further analyzed by Williamson
(1992) in extensive simulation studies. A deficiency of
such mathematical programming based models is that
they do not account for nesting of the fare classes.
To overcome this problem, Curry (1992) proposes a
virtual nesting method. In all cases, however, the allo-
cation of capacity to itinerary demand is decided by
a one-time, static rule (one fixed set of bid prices).

The most realistic and relevant, yet least investi-
gated model for NRM is the dynamic network model.
Talluri and van Ryzin (1998) study a dynamic net-
work model using bid-price control mechanisms and
argue why bid-price policies are not optimal in gen-
eral. They provide an asymptotic regime when certain
bid-price controls, based on a probabilistic program-
ming formulation of the problem, are asymptoti-
cally optimal. In the context of hotels, Bitran and
Mondschein (1995) propose a dynamic policy that
extends to multiple-night stays, but do not give any
further analysis.

Chen et al. (2000) formulate the problem as a
Markov decision problem, and use linear program-
ming and regression splines to approximate the value
function. Gunther et al. (2000) introduce a new
method to compute bid price for single hub airline
networks. Both studies report encouraging simulation
results. None of these take into account cancellations.

For further pointers to related literature, we refer
the interested reader the survey of McGill and
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van Ryzin (1999), and for a schematic summary the
Ph.D. thesis of Popescu (1999).

Relative Positioning. Our approach can be viewed
as extending the single-leg models investigated by
Lee and Hersh (1993) and Bitran and Mondschein
(1995), who actually propose a similar LP-based
heuristic for the multiple-night booking problem in
a hotel, but without any further analysis. Our over-
booking model is similar to the early single-leg DP
formulation of Rothstein (1971, 1974). As far as static
network models are concerned, our LP formulation is
similar to the one proposed by Williamson (1992), but
we handle multiple classes and group bookings. The
network flow formulation we provide for linear net-
works and origin-destination fare (ODF) demands, is
the same as those proposed by Glover et al. (1982) for
airlines and Chen (1998) for hotels.

2. General Models
and Relationships

The problem of dynamic inventory control for NRM
belongs in the class of finite horizon decision prob-
lems under uncertainty. In this section, we present
several optimization models for addressing the NRM
problem, and discuss various relationships between
them. Again, we assume that the control policy does
not feed back into the evolution of the demand pro-
cess. We restrict to the case when cancellations and
overbooking are not permitted; this case is discussed
in detail in §5.

2.1. The Dynamic Programming Model
The stochastic dynamic programming model provides
the optimal policy for the NRM problem, by evaluat-
ing the whole tree of possibilities and making at each
point in time the decision (to sell or not to sell) that
would imply higher future expected revenues.

The states S = �n� t� are defined by the current
available capacity vector n when the remaining time
is t. The stochasticity is given by the demand process
to come �t for the remaining t periods. We define
DP�n� t� to be the maximum expected revenue to
be collected from state �n� t�. Assuming independent

demands, this can be computed via the Bellman equa-
tion as follows:

DP�n� t�

=
m∑
j=1

ptj max�DP�n� t−1��Rj +DP�n−Aj � t−1��

+pt0DP�n� t−1�

= DP�n� t−1�+
m∑
j=1

ptj
(
Rj −DP�n� t−1�

+DP�n−Aj � t−1�
)+ (1)

for all n ≤ N , t ≤ T , with the boundary conditions:

DP�n� t�=−	 if ni < 0 for some i� and

DP�n�0�= 0� for n ≥ 0�

We define the opportunity cost OCj �n� t� to be

OCj �n� t�= DP�n� t−1�−DP�n−Aj � t−1��

Then, the optimal policy accepts a request if and only
if the corresponding fare Rj exceeds its current oppor-
tunity cost. The value function can thus be expressed
as follows:

DP�n� t�= DP�n� t−1�+
m∑
j=1

ptj �Rj −OCj �n� t��
+�

One can easily show that the value function is non-
decreasing in n and t. Moreover, for the single leg
case without batch arrivals, the value function is con-
cave and opportunity costs decrease with t and n (see
Diamond and Stone 1991). Based on these properties,
one can show that the optimal policy is characterized
by threshold times. Threshold times are points in time
during the booking horizon before which requests are
rejected, and after which requests are accepted. In
the general network case, however, this is not true, as
we will show in an example in §4.1.

2.2. The Integer and Linear Programming
Model (IP, LP)

The most frequently utilized formulations for the
NRM problem are static models. These are determin-
istic analogues of the stochastic dynamic problem,
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that use only expected demand information, and are
usually much simpler to solve.

Suppose that all the available demand information
consists of (unbiased) forecasts of the expected aggre-
gate demand to come Dt = E���t� over the remaining
t periods. The integer programming model computes
the optimal allocation y∗ of available inventory n
to the expected itinerary demand Dt , by maximiz-
ing total revenues subject to capacity and itinerary
demand constraints. For all n ≤ N and t ≤ T , we have

IP�n�Dt� = max R′ ·y
s.t. A ·y ≤ n

0 ≤ y ≤ Dt

y integer�

The linear programming relaxation of this problem
provides an efficient way to compute the best possible
“fractional” allocation of inventory, and is defined by
simply relaxing the integrality constraint:

LP�n�Dt� = max R′ ·y
s.t. A ·y ≤ n

0 ≤ y ≤ Dt � (2)

Clearly, we have that IP�n�Dt� ≤ LP�n�Dt�. This
inequality can be strict, but there are particular
instances when equality holds, one of which (linear
networks) we describe in the next section. One can
obtain further insight into the optimal LP-allocation
by looking at the dual problem:

LP�n�Dt� = min v′ ·n+u′ ·Dt

s.t. v′ ·A+u′ ≥ R′

u�v ≥ 0�

This formulation can be equivalently written as:

LP�n�Dt� = min
v≥0

v′ ·n+ �R′ −v′ ·A�+ ·Dt

= min
k∈K

v′
k ·n+u′

k ·Dt�

where K denotes the index set of extreme points
�vk�uk� of the dual polyhedron. Thus, the objective
value of Model (2) is a piecewise linear, concave, and
nondecreasing function of the expected demand to
come Dt and available capacity n. We next relate the
objective values of the dynamic and static formula-
tions at any state �n� t�.

Proposition 1. DP�n� t�≤ LP�n�Dt�.

For a full proof see Popescu (1999). The idea is
that for each pathwise realization of demand, the rev-
enue collected by the DP-policy along that path is
upper bounded by the value of a “perfect hindsight”
stochastic program. The perfect hindsight model,
denoted PI, determines the optimal allocation of
inventory for each particular realization of demand,
and then computes the expected reward over all
scenarios:

DP�n� t� ≤ PI�n��t�= E��LP�n��t
���

≤ LP�n�E���
t
���= LP�n�Dt��

Here, �t
� is the cumulative demand corresponding

to scenario �. Since the LP value is concave in the
demand vector, the second inequality follows from
Jensen’s inequality. Furthermore, the two values con-
verge as demand becomes very large (see Popescu
1999).

2.3. Origin-Destination RM and
Linear Networks

Consider a particular case of the NRM problem,
where demand is by ODF, as opposed to itinerary
specific. This is by default the case for linear net-
works, where there is no question of routing, such as
in hotel or car rental revenue management (where the
nodes are days). In the case of airline revenue man-
agement this situation occurs when there are perfectly
substitutable routes (same price, same travel time, and
so on). In these cases, the Model (2) can be repre-
sented as a network flow problem. The advantage of
this formulation is that it is very easy to solve in prac-
tice and reoptimization is very fast. For airlines, this
model provides (for the company) optimal routing of
path-indifferent customers.

The network representation is as follows: The nodes
are the origins and destinations (days for hotels, {air-
port, time}-pairs for airlines). There are multiple for-
ward arcs �o�d�f representing the flow from origin o
to destination d from fare-class f . The capacity of each
forward arc is the corresponding aggregate demand
D
f

od. The revenue collected along arc �o�d�f is Rfod. For
each “leg” �i� j� (flight leg, respectively, pair of consec-
utive days) there is a backward arc of the type �j� i�,
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capacitated by nij , the available inventory of leg �i� j�.
The revenue collected along backward arcs is zero.
This model has been proposed by Glover et al. (1982)
in the context of airlines, and for hotel revenue man-
agement by Chen (1998), who proves that it reduces
to solving a network flow problem.

Proposition 2 (Integrality of Solution). For
ODF models with integer data, the optimal LP-solution is
integral, that is IP�n�Dt�= LP�n�Dt�.

3. Approximate Dynamic
Programming Algorithms

In this section, we present several algorithms for the
NRM problem. Most of these algorithms belong in the
generic class of approximate dynamic programming
methods (see Bertsekas and Tsitsiklis 1998), in which
an approximate value to the exact value function is
used in the Bellman equation.

Given a certain efficient mathematical program-
ming formulation (MP) of the NRM problem, a
generic approximate DP algorithm for the NRM prob-
lem has the following structure:

Generic MP-Policy. Identify an efficient formula-
tion MP of the NRM problem.
At any current state S = �n� t�,

(1) For a class j request, compute an MP-based esti-
mate of the opportunity cost OCMP

j �S�.
(2) Sell to class j if and only if its fare Rj exceeds

its opportunity cost estimate, i.e.,

Rj ≥ OCMP
j �S��

(3) Go to Step 1 and ITERATE.
We will denote the expected value of this policy at

an initial state S as  MP�S�. The difference between
various algorithms comes from the approximating MP
and the MP-based opportunity cost measure, that is
from Step 1.

3.1. Bid-Price Control
Bid-price control is a popular method in NRM,
whereby the opportunity cost (shadow price, or bid
price) of an itinerary is approximated by the sum of
opportunity costs of the legs along that itinerary. First,
opportunity cost estimates (bid prices) are determined
for each leg in the network, usually as the leg-shadow

prices v from the linear programming formulation (2).
Then itinerary bid prices are computed additively, at
each state S = �n� t�, and for each class j request as

BPj �S�= �vS�′ ·Aj � (3)

Notice that bid prices depend on the choice of
optimal dual variables vS. This technique was ini-
tially proposed by Simpson (1989), then studied by
Williamson (1992) in her Ph.D. thesis. Several proba-
bilistic models have been investigated by Glover et al.
(1982), Williamson (1992), and Talluri and van Ryzin
(1998). It has been observed (Williamson 1992) that
the LP model achieves a better performance, and is
more efficient. For recent work on bid-price control
see Talluri and van Ryzin (1998) and Gunther et al.
(2000).

3.2. Certainty Equivalent Control
The main disadvantages that are apparent from the
definition of leg-based additive bid prices is that
(a) they are not uniquely defined (several sets of
shadow prices may be optimal), and (b) they provide
an additive approximation of the opportunity costs,
which are not necessarily additive due to “bundle
effects” (group or multileg itinerary requests may
determine basis changes in the dual LP).

We provide a different approximation scheme for
opportunity costs, based on certainty equivalent
adaptive control. The idea is to approximate the value
function of the dynamic program DP�n� t� defined in
Equation (1) by the value of the linear programming
problem LP�n�Dt� defined in §2.2. Thus, in Step 1 of
the generic algorithm, a request for a given class j
will be accepted if and only if its price Rj exceeds its
current opportunity cost estimate given by:

OCLP
j �n� t�= LP�n�Dt−1�−LP�n−Aj �Dt−1��

Because the opportunity cost estimate is calculated
in terms of LP objectives, it is uniquely defined, in
that its value will not depend on the choice of (dual)
solution. Thereby, the first drawback of bid prices is
resolved.

This is the certainty equivalent control (CEC) pol-
icy, and we denote its expected value for an initial
state S as  LP�S� = CEC�S�. For more on certainty
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equivalence, see Bertsekas (1995). A similar policy is
proposed by Bitran and Mondschein (1995) in the con-
text of hotel revenue management, but no analysis is
provided. Notice that in the case of linear networks,
it is actually desirable to use the equivalent network
flow formulation as described in §2.3 instead of the
usual LP model because reoptimization at each stage
becomes a much simpler task.

More generally, one can use this technique with vir-
tually any mathematical programming (MP) model
that provides an approximation of the value func-
tion. The corresponding OC estimate for an itinerary j
request at the current state S is defined as OCMP

j �S�=
MP�Srej�j��−MP�Sacc�j��, where Sacc�j� and Srej�j� are the
states corresponding to the accept, and respectively
reject decision for the current request j . For exam-
ple, for the static LP model without cancellations and
overbooking, if S = �n� t�, then Sacc�j� = �n−Aj � t− 1�
and Srej�j� = �n� t−1�.

3.3. Extensions
In this section, we describe several extensions that
provide improvements in the efficiency or accuracy of
the adaptive policies described above.

Rollout Policy. The expected value  H�S� of any
heuristic H started in state S provides an approxi-
mation of the DP�S� value. Therefore, the expected
heuristic values can in turn be used to provide esti-
mates of opportunity costs, determined as follows:

OCR�H�j �n� t�= H�n� t−1�− H�n−Aj � t−1��

This opportunity cost estimation mechanism leads
to a new approximate dynamic programming (ADP)
heuristic, called the rollout of H , and denoted R�H�.
This method is simply a form of policy iteration and
is described in detail in Bertsekas and Tsitsiklis (1998).
It has been observed in the dynamic programming
literature that this procedure systematically improves
heuristic performance (see also Bertsimas et al. 1999,
Bertsekas et al. 1997, Bertsekas and Castanon 1998).

For practical purposes, we suggest using Monte
Carlo simulation for evaluating the policy value  H
for a subset of states, and then interpolating these in
an online fashion. An interesting research idea is to
investigate what types of preprocessing simulations
would provide an insightful information database.

Simulations Using Monte Carlo Demand Esti-
mation. One problem with the certainty equivalent
policy is that it only considers expected demand infor-
mation, and uses a deterministic approach to a highly
stochastic problem. We propose a variation on the
certainty equivalent policy that uses Monte Carlo
demand estimation to capture demand variability.

Suppose we have information that the cumula-
tive demand to come ��t−1 follows a certain distribu-
tion. We generate r samples from this distribution:
D̂t−1

1 � � � � � D̂t−1
r . In Step 1 of the generic algorithm, we

calculate the opportunity cost estimate of itinerary j
as a weighted average,

OCMC
j �n� t�=

r∑
i=1

$i ·OCLP
j �n� D̂t−1

i ��

where $i = P���t−1 = D̂t−1
i 
 ��t−1 ∈ &D̂t−1

1 � � � � � D̂t−1
r '�

and OCLP
j �n� D̂t−1

i �= LP�n� D̂t−1
i �−LP�n−Aj � D̂t−1

i �.
One difficulty with implementing this procedure is

that we might not have enough information about the
aggregate demand and/or it may be too expensive to
compute the actual value of the conditional probabil-
ities $i. For this reason, we run a simplified version
of this policy, that assigns the same weights to all the
trials: OCMC

j �n� t�= �1/r� ·
∑r
i=1 OCLP

j �n� D̂t−1
i �.

4. Structural Properties
In this section, we derive several structural properties
of the new approximate dynamic programming algo-
rithm (CEC) and compare it with additive bid-price
control algorithms (BPC) developed in the literature.

Given that the NRM problem requires a real-
time response, it is desirable to use computationally
inexpensive models to construct approximations of
the opportunity cost. This motivates the choice for
using the LP formulation described in §2.2. We are
interested in a comparative structural assessment of
the two LP-based policies described previously, BPC
and CEC, and their corresponding opportunity cost
approximations.

From an asymptotic point of view, it should be
noted that the CEC policy is asymptotically optimal
in the fluid scaling regime proposed by Talluri and
van Ryzin (1998), whereby demand and capacities
are simultaneously increased in a way that preserves
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their relative values constant. They prove that in this
regime, the additive bid-pricing policy converges to
the optimum, as bid prices are being held fixed. By
imitating their proof, one can show that the same
property holds for the CEC policy, with determinis-
tic prices, as OC estimates are being held fixed (see
Popescu 1999).

The next result compares the opportunity cost
approximations of a class j request at any given state.

Proposition 3. In any state �n� t�, for any bid prices
BPj �n� t��BPj �n−Aj � t�, the following inequalities hold:

BPj �n� t�≤ OCLP
j �n� t�≤ BPj �n−Aj � t�� (4)

Inequalities are strict if accepting class j must incur a
change of basis in the LP dual.

Proof. Recall that we have defined:

OCLP
j �n� t� = LP�n�Dt−1�−LP�n−Aj �Dt−1�

= �vn� t�′ ·n+ �un� t�′ ·Dt−1

− �vn−Aj � t�′ · �n−Aj �− �un−Aj � t�′ ·Dt−1�

where �vn� t�un� t� and �vn−Aj � t�un−Aj � t� are optimal
dual solutions of LP�n�Dt−1� and LP�n − Aj �Dt−1�,
corresponding to the given bid prices: BPj �n� t� =
�vn� t�′ · Aj and BPj �n − Aj � t� = �vn−Aj � t�′ · Aj , respec-
tively. Because both solutions are feasible for both
programs, we obtain the following upper bounds by
evaluating each LP at the optimal solution of the
other:

LP�n�Dt−1�≤ �vn−Aj � t�′ ·n+ �un−Aj � t�′ ·Dt−1�

LP�n−Aj �Dt−1�≤ �vn� t�′ · �n−Aj �+ �un� t�′ ·Dt−1�

The upper bound in Equation (4) follows by applying
the first of these inequalities in the OC formula, and
the lower bound by the second inequality,

BPj �n� t� = �vn� t�′ ·Aj ≤ OCLP
j �n� t�≤ �vn−Aj � t�′ ·Aj

= BPj �n−Aj � t�� (5)

In case the two dual optimal solutions coincide, we
obtain equality throughout. �

In general, if at a given state the CEC policy accepts
a class j request, then at the same state, the bid-pricing

Table 1 The Behavior of the BPC and CEC Policies as a Function of an
Optimal Primal Solution y∗

y ∗
j ≥min�Dj �1� y ∗

j <min�Dj �1� in all y∗,
y ∗
j in some y∗ but �= 0 in some y ∗

j = 0 in all y∗

CEC accept reject reject
BPC accept accept reject

policy will also accept, but not vice versa. This is
because the following situation may occur: BPj �n� t�≤
Rj <OCLP

j �n� t�, (see §4.1).
Table 1 provides a comparative characterization of

the bid-pricing policy (BPC) versus the CEC policy, in
terms of the structure of the primal optimal solutions
y∗ of the LP model (2). We assume the BPC policy
is well defined, in that the dual optimal solution is
unique. We also assume that the dual basis is not the
same for LP�n�Dt−1� and LP�n−Aj �Dt−1�; if the dual
basis does not change, then the policies are identical.
The following two propositions state and prove these
results formally.

Proposition 4 (Structural Properties of the
BPC Policy). At any state �n� t�, if LP�n�Dt−1� has
a unique dual optimal solution, then the corresponding
bid-price policy accepts only classes j for which y∗j > 0 in
some primal optimal solution.

Proof. By analyzing the primal and dual LP, one
can distinguish the following situations:

• In all optimal LP-solutions y∗j = 0, then un� t
j = 0

from complementary slackness. By strict complemen-
tary slackness (see Bertsimas and Tsitsiklis 1997,
p. 192), we have �vn� t�′ ·Aj+un� t

j > Rj , i.e., BPj �n� t�=
�vn� t�′ · Aj > Rj , in which case the bid-price policy
rejects class j .

• In all optimal LP-solutions y∗j = Dt−1
j , in which

case un� t
j = �R′

j − �vn� t�′ ·Aj �+ > 0, so the bid-price pol-
icy accepts class j .

• There is some optimal LP-solution such that 0<
y∗j < D

t−1
j , which implies that the dual constraint

�vn� t�′ · Aj − un� t
j ≥ Rj is binding and un� t

j = 0, so
�vn� t�′ ·Aj = Rj , and thus the bid-price policy accepts
class j . �

Proposition 5 (Structural Properties of the
CEC Policy). Suppose that LP�n − Aj �Dt−1� and
LP�n�Dt−1� have different optimal dual bases. Then:
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(a) CEC accepts class j if y∗j ≥ min�Dt−1
j �1� in some

optimal solution of LP�n�Dt−1�.
(b) CEC rejects class j if y∗j <min�Dt−1

j �1� in all opti-
mal solutions of LP�n�Dt−1�.

Proof. If in some optimal solution y∗ of LP�n�
Dt−1� we have that y∗j ≥ min�Dt−1

j �1�, then y∗ −
min�Dt−1

j �1� ·ej ≥ 0 is a feasible solution of LP�n−Aj �

Dt−1
�j� �, where Dt−1

�j� =Dt−1−min�Dt−1
j �1� ·ej , and hence,

LP�n�Dt−1� = R′ ·y∗≤min�Dt−1
j �1�Rj+LP�n−Aj �Dt−1

�j� �

≤ Rj+LP�n−Aj �Dt−1��

where the last inequality holds because any opti-
mal primal solution of LP�n − Aj �Dt−1

�j� � is feasible
to LP�n −Aj �Dt−1�. So, OCLPj �n�Dt� = LP�n�Dt−1�−
LP�n−Aj �Dt−1�≤ Rj . This proves Part (a).

For Part (b), it follows that 0 ≤ y∗j < Dj in all pri-
mal optimal solutions. By complementary slackness,
we have that un� t

j = 0 and �vn� t�′ ·Aj = Rj . Under the
assumption that the optimal dual basis changes, we
obtain by Proposition 3 that OCLP

j �n� t� > BPj �n� t� =
�vn� t�′ ·Aj = Rj , that is CEC rejects class j , which con-
cludes the proof. �

4.1. An Example
For single-leg instances of the NRM problem, the bid
pricing and the CEC algorithms are the same. This
is because under the CEC algorithm, the opportu-
nity cost estimates are the same (no change of basis
occurs in Equation 4). However, this is not true for
the general network case. In this section, we provide
an example that highlights the differences between
the BPC and the CEC policies, and shows instances
where each one is suboptimal. Moreover, we explain
why the cross-concavity properties that insure the
threshold time structure for the optimal single-leg
policy cannot be extended to the network case. We
will use the same example to exhibit the following
situations:

• An instance when BPC accepts, but CEC rejects
a given request in the same state;

• An instance when BPC is suboptimal;
• An instance when CEC is suboptimal;
• A counterexample of a cross-concavity property

(“decreasing differences”) of the LP and DP-value
functions for the NRM problem.

In general, if at a given state the CEC policy accepts
a request from itinerary j , then at the same state the
bid-pricing control policy will also accept, but not vice
versa (see Proposition 3). The following situation may
occur: BP�j� ≤ Rj < OCLP�j�, and so we will accept
under the BPC policy but not under the CEC policy.
The following is an example of such behavior, that
provides insight into the structural properties of the
two policies.

Consider a network with four nodes: a hub h, two
origin nodes o1� o2, and a destination node d. The legs
of the network are (1) �o1�h�, (2) �o2�h�, (3) �h�d�. One
can think of this as part of a bigger network where
the other (connecting) flights have been sold out. Sup-
pose there is demand from the origin nodes o1� o2 to
the hub node h and to the destination node d, on the
itineraries: (1) o1h, (2) o2h, (13) o1hd, (23) o2hd. Sup-
pose that there is only one fare class per itinerary,
and there is no demand from h to d. We assume the
pricing structure is such that subitineraries cost less:
R1 < R13�R2 < R23. Furthermore, assume with almost
no loss of generality that R13+R2 <R23+R1 (the other
case is symmetric, unless equality holds).

Suppose that the available capacity in the current
state t is n = �n1�n2�n3� and the expected demand
for each fare class in the remaining t− 1 periods is
positive. The static LP and its dual can be formulated
as follows:

LP�n�D� = max R1y1 +R2y2 +R13y13 +R23y23

s.t. y1 +y13 ≤ n1

y2 +y23 ≤ n2

y13 +y23 ≤ n3

0 ≤ y ≤ D

= min n′v+u′D
s.t. v1 +u1 ≥ R1

v2 +u2 ≥ R2

v1 +v3 +u13 ≥ R13

v2 +v3 +u23 ≥ R23

u�v ≥ 0�

Suppose that there is one seat left on each leg, so n =
�1�1�1�, and D1 > 1 and D23 > 1, so that the demand
for the high-paying mix is large enough for the corre-
sponding constraints to be nonbinding in an optimal
solution. Then the optimal LP solution is y∗1 = y∗23 = 1,
y∗2 = y∗13 = 0, and the value of the LP is R1 +R23.
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Since the demand constraints are nonbinding, we
must have that u = 0, and hence v1 ≥R1�v2 ≥R2�v3 ≥
max�0�R13 − v1�R23 − v2�. Therefore, in an optimal
solution, the shadow prices are equal to v∗1 = R1�v

∗
2 =

R2�v
∗
3 = R23 −R2. We can compute the bid prices and

opportunity costs as follows:

OCLP
1 = LP�1�1�1�D�−LP�0�1�1�D�

= R1 = BP�1��
OCLP

2 = LP�1�1�1�D�−LP�1�0�1�D�
= R1 +R23 −R13 > BP�2�= R2�

OCLP
13 = LP�1�1�1�D�−LP�0�1�0�D�

= R1 +R23 −R2 = BP�13� > R13�

OCLP
23 = LP�1�1�1�D�−LP�1�0�0�D�

= R23 = BP�23��

Therefore, the two policies disagree on the accep-
tance of class (2): Under the BPC policy, we will
accept, whereas under the CEC policy, we will reject
a class (2) request at state n = �1�1�1� as long as
there is sufficient forthcoming demand for classes (1)
and (23).

The question is which one of the policies is better?
Clearly, in the case when demand is deterministic,
the BPC policy is suboptimal, by giving away at time
t one unit of capacity that would bring higher rev-
enues in the future. The CEC policy, however, is by
definition optimal in the deterministic case because
it is equivalent to the DP (certainty equivalence). In
the stochastic case, the bid-pricing policy is subopti-
mal when there is sufficient demand to come from the
high-fare mix. Otherwise, we may be better off accept-
ing class (2) right away, in which case our policy is
suboptimal.

We can also observe on this example that the LP,
and thus the DP value do not exhibit a certain type of
cross-concavity property called decreasing differences
(see Karaesman and van Ryzin 1998):

Definition 1. A function f . S ⊂ Rn → R satisfies
decreasing differences on S if for any s ∈ S, and i �= j ∈
&1� � � � �n', and for all 0i�0j > 0 with s+ 0iei, s+0jej
and s + 0iei + 0jej ∈ S, the following relation holds:
f �s+0iei+0jej �− f �s+0iei�≤ f �s+0jej �− f �s�.

This cross-concavity property reduces in the uni-
variate case to concavity. This is the key observation
underlying the proof of the threshold times property
for the optimal single-leg policy (see Diamond and

Stone 1991), and would provide a sufficient condition
for the property to extend to the network case.

However, the decreasing differences property is
violated in our example:

LP�1�1�1�−LP�0�1�1�

= max�R1 +R23�R2 +R13�−R23 <R13

= LP�1�0�1�−LP�0�0�1��

Notice that the assumption here is that
“subitinerary” fares are cheaper (R1 < R13�R2 < R23).
Network effects imply that the opportunity cost of
Itinerary (13) under the CEC policy decreases with
capacity. Furthermore, if the demand is large enough,
the above relation transfers to the corresponding DP
values because the two are asymptotically equal.
Surprisingly, this says that incremental revenues
(opportunity costs) may decrease by decreasing
capacity along a certain direction (see also Feng and
Lin 2000).

5. Cancellations and Overbooking
The control policies we have discussed so far do
not take into account the fact that a significant frac-
tion of customers cancel their reservations during
the booking period (cancellations) or simply do not
utilize their reservation (no-shows). In these cases
customers get full, partial, or no refund, depending
on the fare category. In either case, extra capacity
becomes available and could be used to accommodate
other potential customers. To counterbalance this phe-
nomenon, a common revenue management practice is
overbooking. Airlines, hotels, and so on, oversell their
inventories to account for reservations that will not
materialize. If at the end of the horizon, more demand
has materialized than the inventory can accommo-
date, companies practice class upgrades, pay over-
booking penalties to unsatisfied reservations or even
perform aircraft changes.

The typical overbooking method practiced by air-
lines, hotels, and so on, is to decide an initial alloca-
tion of overbooking pads, which are virtual increases
in leg-capacity. This is usually performed, in prac-
tice as well as in the literature, as a static, one-time
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decision made at the beginning of the booking hori-
zon. In the following, we propose a new method
for dynamic overbooking control, where oversales
decisions are dynamic and implicit in the admission
control mechanism.

5.1. General Models and Relationships
First, we extend the various models described in §2 to
incorporate cancellations, no shows and overbooking.

A Dynamic Programming Model. In the case of
perfect state information, this model provides the opti-
mal control policy. By allowing cancellations, the state
space of the DP-model becomes much larger because
it is necessary to keep track of the past sales record s.
The random quantities involved are the demand, can-
cellations, and no-show processes. Given the initial
network inventory N, the maximum expected rev-
enue (less refunds and penalties) to be collected from
state �s� t� onward (cost-to-go), is given by

DPoN�s� t� =
∑
j

ptj ·max
(
DPoN�s� t−1��

Rj +DPoN�s+ej � t−1�
)

+ ∑
j
sj≥1

pctj · �DPoN�s−ej � t−1�−Rctj �

+pt0 ·DPoN�s� t−1�

DPoN�s�0� = ∑̃
s

P�s̃ bookings out of s materialize�

·DPoN�s̃�−1�

DPoN�s�−1� = −min C ′ · so
s.t. A · �s− so�≤ N

0 ≤ so ≤ s� (6)

The difference from the basic model is that cancel-
lation events are incorporated in the Bellman Equa-
tion (6), and the boundary conditions are changed to
account for no-shows (time t = 0) and final bumping
decisions (time t =−1). The final bumping decision is
made so as to minimize total penalties, while keeping
the actual capacity restrictions satisfied.

If customer-walking penalties are payed per leg
c = �c1� � � � � cl�, rather than per itinerary, the bound-
ary condition at t = −1 is simply c′�As−N�+. When
bumping penalties are itinerary specific (not leg-
additive), then an optimization problem needs to be

solved to decide which passengers should be refused
boarding so as to incur least penalties. For example,
in a two-leg network which is oversold by one seat
on each leg, it is better to bump a connecting passen-
ger rather than two different passengers on each leg
whenever overbooking penalties are leg-subadditive.

This model does not incorporate secondary effects
associated with overbooking (e.g., image damage and
loss of goodwill, customer value, demand shifting,
and so on).

The Integer and Linear Programming Models. In
the case of the NRM problem with cancellations and
no shows, we observe that both the final revenue
gained from, and capacity occupied by a class j reser-
vation are not deterministic quantities because they
depend on cancellations and no-shows which are ran-
dom processes. To define a model that is consistent
with these observations, we define R̃j and Ãj to be the
expected revenue gained from, and expected capacity
occupied by a class j reservation, before the overbook-
ing period. Let pcj and pnsj denote the probability that a
given class j reservation is cancelled at some point in
the booking period, and respectively does not show
up for the flight. We assume that these quantities are
independent on the time the reservation was made,
and so is the cancellation penalty. We denote the rev-
enue expected (or “adjusted”) from booking a class
j customer as R̃j = Rj − �1− pnsj � · pcj ·Rcj − �1− pcj � · pnsj ·
Rnsj , which accounts for potential cancellation and no-
shows events and respective refunds Rcj �R

ns
j (but not

overbooking penalties). Let Ãj = �1− pcj � · �1− pnsj � ·Aj

denote the expected capacity occupied by a class j
reservation at the end of the horizon. Finally C̃j =
�1− pcj � · �1− pnsj � ·Cj is the average overbooking cost
of one class j reservation.

With these notations, we can formulate the fol-
lowing integer programming approximation model,
that maximizes expected revenues subject to expected
capacity constraints:

IPoN�s� t� = max R̃′ ·y−C′ ·zo
s.t. 0 ≤ Ã · �y+ s�−A ·zo ≤ N

0 ≤ y ≤ Dt

y�zo integer�

The vector y decides how many requests to be
accepted in the future, whereas zo determines which
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customers (itinerary requests) should be bumped at
the end of the horizon, if necessary. The “virtual”
overbooking pad for each leg is A · zo. The capacity
constraint requires that cancellation-adjusted past and
future sales, less oversales, should not exceed the ini-
tial network capacity.

With the change of variable soj = zoj /�1−pcj � ·�1−pnsj �,
j = 1� � � � �n, the corresponding linear programming
relaxation, and its dual, can be written as follows:

LPoN�s� t� = max R̃′ ·y− C̃′ · so
s.t. Ã · �s+y− so�≤ N

0 ≤ y ≤ Dt

0 ≤ so ≤ y+ s

= min v′ ·N−u′ · s+ �R̃′ −u′�+ ·Dt

s.t. u′ = min�C̃′�v′ · Ã�
v ≥ 0�

5.2. Adjusted Policies
Following the spirit of the basic adaptive bid pricing
and CEC policies, we adjust these to incorporate can-
cellations and overbooking.

Adjusted BPC Policy. We modify the DP model so
that at any given state S a class j request is accepted if
and only if its “adjusted” fare R̃j is higher than either
its adjusted bid price, or the adjusted overbooking
penalty C̃j , i.e.,

R̃j ≥ min�C̃j�BPoj �S���

Here, bid prices are computed as BPoj �S� = �vS�′ · Ãj ,
where vS represent shadow prices for the leg-capacity
constraints in LPo�S�.

Adjusted CEC Policy. Similarly, we can adapt the
CEC policy to accept a class j request if and only if
its “adjusted” revenue exceeds its “adjusted” oppor-
tunity cost. R̃j≥OCoj �S�= LPoN�s� t−1�−LPoN�s+ej � t−
1�. Again, adjustment accounts for the fact that capac-
ity and revenue might not be realized or may be
overbooked.

The same type of arguments can be used to extend
Proposition 1 for the case of cancellations, no shows
and overbooking. Moreover, the structural proper-
ties proved in §4 are preserved in the overbooking-
adjusted policies.

6. Computational Results
In this section, we present computational results that
illustrate the relative practical performance of the
previously described admission control policies for
the NRM problem, under different demand regimes.
Our objective is to evaluate the different models and
policies proposed, in terms of the following criteria:
(1) running time, (2) quality of approximation, and
(3) robustness. In addition, we would like to fur-
ther investigate the effectiveness of several extensions
and improvements. In §6.1, we report computational
results without cancellations and overbooking, while
in §6.2, we allow cancellations and overbooking.

6.1. Computational Performance Without
Cancellations and Overbooking

We performed expected value calculations for two-leg
instances and simulation runs for larger networks. To
have a consistent and fairly accurate base for compar-
ing various policies, these were simulated simultane-
ously on the same realizations of the demand process.
The computations were performed in MATLAB 4.0 on
an Intel Pentium II Celeron 450 MHz (128 MB RAM,
WinNT 4.0). We restricted our attention to smaller
instances with the explicit objective to obtain insights
into the behavior of both BPC and CEC.

6.1.1. Models and Assumptions. We considered
the following types of networks:
N2. A two-leg network with nodes o�h�d, legs

(1) oh (2) hd and capacities N = �N1�N2�. The available
itineraries are (1) oh, (2) hd, and (3) ohd, with one class
per itinerary. The leg-class incidence matrix, together
with the fare structure R, is:

(
R

A

)
=


R1 R2 R3

1 0 1

0 1 1

 �
N3. The three-leg network described in the exam-

ple of §4.1, with four nodes: a hub h, two origin nodes
o1� o2, and a destination node d, and the legs (1) o1h,
(2) o2h, (3) hd. There is demand from the origin nodes

Transportation Science/Vol. 37, No. 3, August 2003 269

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

18
.1

72
.5

.9
1]

 o
n 

05
 A

ug
us

t 2
01

6,
 a

t 0
7:

10
 . 

Fo
r 

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll 
ri

gh
ts

 r
es

er
ve

d.
 



BERTSIMAS AND POPESCU
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o1� o2 to the hub node h and to the destination node d,
on the itineraries: (1) o1h, (2) o2h, (13) o1hd, (23) o2hd.
Suppose that there is only one fare class per itinerary,
and there is no demand from h to d. The leg-class inci-
dence matrix, together with the fare structure R, is:

(
R

A

)
=


R1 R2 R13 R23

1 0 1 0

0 1 0 1

0 0 1 1

 �

N4. A four-leg network, with two origins o1� o2,
two destinations d1�d2 and a hub h. The legs in the
network are (1) o1h, (2) o2h, (3) hd1, (4) hd2, with capac-
ities N = �N1�N2�N3�N4�. There is demand for all
the eight itineraries, with one fare class per itinerary.
The leg-class incidence matrix, together with the fare
structure R, is:

(
R

A

)
=



R1 R2 R3 R4 R13 R14 R23 R24

1 0 0 0 1 1 0 0

0 1 0 0 0 0 1 1

0 0 1 0 1 0 1 0

0 0 0 1 0 1 0 1


�

N4�2. The same as �N4�, except there are two fares
per itinerary, so 16 demand classes in all. The leg-
class incidence matrix, together with a high-low fare
structure R = �Rh�Rl�, is:

(
R

A

)
=



Rl1 Rh1 Rl2 Rh2 Rl3 Rh3 Rl4 Rh4 Rl13 Rh13 Rl14 Rh14 Rl23 Rh23 Rl24 Rh24

1 1 0 0 0 0 0 0 1 1 1 1 0 0 0 0

0 0 1 1 0 0 0 0 0 0 0 0 1 1 1 1

0 0 0 0 1 1 0 0 1 1 0 0 1 1 0 0

0 0 0 0 0 0 1 1 0 0 1 1 0 0 1 1


�

We used the following alternative scenarios to
model the arrival process:
HP. Homogeneous Poisson arrivals with arrival

rates given by a constant vector p (i.i.d. Bernoulli
trials).
NHL. Nonhomogeneous Poisson with high-low

demand. We assume arrival rates increase for high-
fare classes (pt = p/ loga�a+ t ·2�) and decrease (pt =
p/ loga�a + �T − t� · 2�) for low-fare classes, as we
approach departure.
NLH. Nonhomogeneous Poisson with low-high

demand. We assume arrival rates decrease for high-
fare classes (pt = p/ loga�a+ �T − t� · 2�) and increase
(pt = p/ loga�a + t · 2�) for low-fare classes, as we
approach departure.

The log-factors are given by 2, and a is a constant,
equal to the base of the logarithm (we take a= 2).

6.1.2. Running Time. Exact calculations of the
optimal expected revenue (DP), and expected values
of the proposed policies (CEC, BPC) are practically
impossible. Already for two-leg networks (N2) with
one class per itinerary, 50 seats per leg initial capac-
ity and T = 300 time periods the computation takes
about two hours.

A tractable approach for measuring performance of
the proposed policies, however, is provided by simu-
lation. A simulation run of the CEC or BPC policies
for a two-leg network takes less than a minute (less
than a second per iteration). The largest network we
simulated was a four-leg network �N4�2� with two
demand classes per itinerary. When the initial capaci-
ties are in the order of N = 50–100 and the time hori-
zon has T = 300 time periods, a full simulation run
for such an instance takes a few minutes (i.e., a few
seconds per iteration).
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Table 2 Expected Value Calculation for �N2� with N= �50�50�; R= �25�20�35�; p= �0	4�0	3�0	1�; T = 10−200
(HP) (NLH) (NHL)

T LP DP CEC BPC LP DP CEC BPC LP DP CEC BPC

10 195 195 195 195 201	4 201	4 201	4 201	4 249	7 249	7 249	7 249	7
20 390 390 390 390 413	5 413	5 413	5 413	5 498	8 498	8 498	8 498	8
30 585 585 585 585 632	9 632	9 632	9 632	9 747	3 747	3 747	3 747	3
40 780 780 780 780 857	6 857	6 857	6 857	6 995	1 995	1 995	1 995	1
50 975 975 975 975 1�086	5 1�086	5 1�086	5 1�086	5 1�242	1 1�242	1 1�242	1 1�242	1
60 1�170 1�170 1�170 1�170 1�318	6 1�318	6 1�318	6 1�318	6 1�488	3 1�488	1 1�488	1 1�488
70 1�365 1�365 1�365 1�365 1�553	4 1�552	2 1�552	1 1�552	2 1�733	6 1�703 1�702	8 1�690	4
80 1�560 1�559	5 1�559	5 1�559	5 1�790	4 1�755	3 1�754	5 1�754	9 1�834	3 1�800	9 1�799	6 1�753	4
90 1�755 1�745	7 1�745	4 1�745	7 1�885	3 1�863	3 1�860	8 1�840	9 1�846	1 1�831	4 1�829	5 1�791	1
100 1�950 1�897	5 1�896	4 1�897	1 1�925	1 1�904	7 1�901	4 1�852	1 1�858	4 1�845	8 1�843	1 1�809	6
110 2�020 1�998	9 1�996	6 1�993	4 1�937	3 1�922 1�917 1�863	3 1�871	1 1�858	7 1�855 1�822	5
120 2�090 2�064	6 2�061	6 2�031	6 1�949	1 1�934	3 1�927	1 1�876	9 1�884	4 1�872	1 1�867	1 1�837
130 2�140 2�110	6 2�107	3 2�021	9 1�960	6 1�945	9 1�936	7 1�889	5 1�898	3 1�886	2 1�879	8 1�851	5
140 2�170 2�145	5 2�140	5 2�018	3 1�971	7 1�957	1 1�946	2 1�899	5 1�913 1�901 1�893	2 1�864
150 2�200 2�175	7 2�167	6 2�018	9 1�982	5 1�968	1 1�955	6 1�907	2 1�928	7 1�916	7 1�907	6 1�875	8
160 2�230 2�202	4 2�192	9 2�019	3 1�993	1 1�978	7 1�964	9 1�913	1 1�945	5 1�933	6 1�923	2 1�887	8
170 2�250 2�222	8 2�216	9 2�019	4 2�003	4 1�989	1 1�974 1�918	1 1�963	8 1�952 1�940	2 1�900	8
180 2�250 2�236	2 2�233 2�019	4 2�013	5 1�999	3 1�983 1�922	9 1�984	2 1�972	5 1�959	3 1�915	5
190 2�250 2�243	8 2�242	3 2�019	4 2�023	5 2�009	3 1�991	8 1�928	6 2�007	4 1�995	8 1�981	4 1�932	4
200 2�250 2�247	5 2�246	9 2�019	4 2�033	2 2�019 2�000	5 1�934	7 2�035	3 2�023	7 2�008	1 1�952	8

Note. The first section considers homogeneous arrivals, and the next two are nonhomogeneous arrivals with �= �50�50�30� and a= 2.

For more realistic airline networks [20 legs (10
origins, 10 destinations, and one hub), 600 classes
(100 itineraries, 6 fare classes)] the time per iteration
is still in the order of a few minutes. This supports
the idea that these dynamic policies can be used in an
online fashion to provide an adaptive control mech-
anism where opportunity cost estimates are rapidly
recalculated at each iteration.

6.1.3. Quality of Approximation

Expected Value Computations for Two-Leg Net-
works. The results in Table 2 show expected value
calculations for the case of the two-leg network,
with different initial capacities, fare structures, and
demand regimes. In all cases, we observe that when
the time horizon is large, the value of the CEC pol-
icy is near optimal, whereas the bid-pricing policy
appears to be off by a constant. When the time hori-
zon is small, both policies perform optimally. For
intermediate stages when both some demand and
capacity constraints become binding, it is not clear
which policy is better. Note that the BPC value is non-
monotonic over time. We believe that this is because

of the dependence of the policy on the choice of dual
solutions (not enforced in our program).

Simulation Results. For two-leg networks we pro-
vide in Table 3 a comparison between simulation
results and exact calculations for the DP value func-
tion and expected values of the CEC and BPC poli-
cies. The high dimensionality of the problem does
not allow for exact expected value calculations for
larger networks. In Table 4, we present results from

Table 3 Simulations and Expected Value Calculation for Two-Leg
Network

CEC BPC
DP

T LP EXP EXP SIM (
 ) EXP SIM (
 )

�N2�

50 975 975 975 973.3 (71) 975 973.2 (71)
100 1�950 1�897	5 1�896	4 1,904.05 (83) 1�897	4 1,903.75 (82)
150 2�200 2�175	5 2�167	6 2,174.9 (45) 2�018	8 2,021.2 (44)
200 2�250 2�247	5 2�246	9 2,246.4 (18) 2�019	4 2,023.3 (17)
300 2�250 2�250 2�250 2,250 (0) 2�200 2,200 (0)

Note. �N2�: N= �50�50�; R= �25�20�35�; p= �0	4�0	3�0	1�.

Transportation Science/Vol. 37, No. 3, August 2003 271

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

18
.1

72
.5

.9
1]

 o
n 

05
 A

ug
us

t 2
01

6,
 a

t 0
7:

10
 . 

Fo
r 

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll 
ri

gh
ts

 r
es

er
ve

d.
 



BERTSIMAS AND POPESCU
Revenue Management in a Dynamic Network Environment

Table 4 Simulations for Larger Networks (Top-
Down)

T LP CEC (
 ) BPC (
 )

�N3�

100 2,300 2,273 (140) 2,268 (140)
200 3,200 3,155 (184) 3,148 (181)
300 3,600 3,508 (178) 3,476 (177)

�N4	1�

100 3,500 3,462 (150) 3,460 (154)
300 5,800 5,615 (78) 5,635 (74)
600 6,050 5,951 (85) 5,842 (94)

�N4	2�

100 4,070 4,087 (213) 4,085 (216)
200 6,125 5,914 (241) 5,856 (233)
300 11,110 10,859 (302) 10,846 (309)

Note. �N3�: N = �60�60�100�; R = �10�20�50�30�
and p = �0	2�0	3�0	4�; �N4	1�: Ni = 50, R = �20,
20�50�30�60�40�45�55�, p = �0	2�0	25�0	05�0	05�0	1,
0	15�0	1�0	1�; �N4	2�: Ni = 50, Rl = �20�20�50�30,
60�40�45�55�, with Rh = 2 ·Rl and p = �0	15�0	02�0	2,
0	01� 0	05� 0	015� 0	05� 0	01� 0	1�0	01�0	15�0	015�0	1,
0	01�0	1�0	01�.

simulating various admission control policies for
larger networks. For simulation runs, we perform
NT = 100 trials and average the results to compute an
expected value estimate. We also compute the stan-
dard deviation 3 of the estimation. In all cases, we
observe that our CEC policy performs better than the
BPC policy, by up to 2%.

6.1.4. Robustness in Estimation. So far, we have
assumed that the CEC and BPC policies use cor-
rect demand information, in the sense that the mean-
demand forecast is unbiased. While this provides a
reasonable standard for comparing policies, in reality,
the (expected demand) measurements obtained from
forecasting tools are seldom exact. We feel that it is
of practical value to assess the robustness of the CEC
and BPC policies to noise and bias in the demand
forecast.

To obtain a qualitative measure of how bias and
noise in the demand forecast affect these policies,
we assess the impact on the underlying LP-value.
Let � be an m-variate random variable represent-
ing the noise in demand forecast for each class. To
measure the robustness of the LP-value to bias and

noise in demand forecasts, we compare LP�n�D� and
E��LP�n�D+���. From the dual formulation we have
that

E��LP�n�D+���−LP�n�D�

= E��OC��n�D��≤ �R′ −v′ ·A�+ ·E����
where v are the leg-shadow prices of LP�n�D�. So
there is a sublinear effect on the value function, asso-
ciated with the forecasting bias of the demand for
those classes whose fares exceed their bid prices.

Furthermore, computational experiments show that
the CEC policy is surprisingly robust to certain forms
of noise and bias in the demand data, much more so
than BPC.

Correlated Random Noise. At each point in time
t we generate a multivariate random variable � ∼
N�b���, to introduce noise into the arrival forecast.
We propose two alternatives for adding noise to the
forecast:

• Constant rate noise: Generate � and add it to the
arrival rate at each time;

• Log-rate noise: Generate � and add �t = log�a+
2 · �t−a�/T � ·� to the arrival rate.

From the results in Table 5, we observe that CEC
is constantly more robust than BPC to noise and bias.
The columns LP� compute the LP-values with noisy
forecasts: LP��n�Dt�= LP�n�Dt+E��t��.

Uncorrelated Random Noise. The goal of this com-
putational exercise is to illustrate and compare the
robustness of the BPC and CEC policies, to increasing
bias in the demand forecast. We start with an initial
(uncorrelated) bias per arrival b, and in each consecu-
tive experiment subscripted �$b�, we increase the bias
by a factor of $ = 1�2�4. In the last experiment (�),
we introduce correlated noise (� same as above) in
the arrival rate estimation. We observe from Table 6
that CEC is constantly more robust than BPC to noise
and bias.

6.1.5. Extensions

Rollout Heuristics. We examine how previously
computed values of the CEC and BPC policies can be
used to provide estimates of opportunity costs, lead-
ing to the roll-out heuristics R(CEC) and R(BPC). We
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Table 5 Computation with Noisy Forecasts

Constant Rate Log Rate

T LP LP� DP CEC BPC LP LP� DP CEC BPC

10 195 213	7 195 195 195 195 221	1 195 195 195
20 390 416	7 390 390 390 390 408	7 390 390 390
30 585 611	9 585 585 585 585 623	3 585 585 585
40 780 784	6 780 780 780 780 765	5 780 780 780
50 975 975	1 975 975 975 975 957	2 975 975 975
60 1�170 1�175	5 1�170 1�170 1�170 1�170 1�123	5 1�170 1�170 1�170
70 1�365 1�366	4 1�365 1�365 1�365 1�365 1�315	3 1�365 1�365 1�365
80 1�560 1�605	6 1�559	5 1�559	5 1�559	5 1�560 1�569 1�559	5 1�559	5 1�559	5
90 1�755 1�770	3 1�745	7 1�745	2 1�745	3 1�755 1�685	5 1�745	7 1�745	2 1�745	1
100 1�950 1�977	8 1�897	5 1�895	8 1�895	4 1�950 1�878	5 1�897	5 1�895	8 1�894	6
110 2�020 2�086	1 1�998	9 1�996	1 1�961	4 2�020 2�008	5 1�998	9 1�996 1�974	7
120 2�090 2�115	2 2�064	6 2�061	7 1�971	7 2�090 2�069	2 2�064	6 2�061	6 1�967	2
130 2�140 2�139	4 2�110	6 2�107	1 1�980	1 2�140 2�105	5 2�110	6 2�106	3 1�981	2
140 2�170 2�172 2�145	5 2�139	6 1�987	7 2�170 2�147	1 2�145	5 2�137	4 1�987	9
150 2�200 2�197	8 2�175	7 2�166	9 1�994	5 2�200 2�168 2�175	7 2�162	5 1�993	5
160 2�230 2�227	8 2�202	4 2�192	8 1�999	5 2�230 2�178	8 2�202	4 2�185	5 2�030	2
170 2�250 2�250 2�222	8 2�216	8 2�000	2 2�250 2�203	2 2�222	8 2�208	4 2�151	1
180 2�250 2�250 2�236	2 2�233 2�000	2 2�250 2�240	5 2�236	2 2�227	3 2�208	9
190 2�250 2�250 2�243	8 2�242	3 2�130	6 2�250 2�235	2 2�243	8 2�240	3 2�223	4
200 2�250 2�250 2�247	5 2�246	9 2�227 2�250 2�248	5 2�247	5 2�246	8 2�230	6

Note. �N2�: N= �50�50�; R= �25�20�35�; p= �0	4�0	3�0	1�; b= �0	07�−0	05�0	03�; � = 1
5

 0	1 −0	02 0	04
−0	02 0	08 0	01
0	04 0	01 0	06

.

observe that the rollout procedure produces a signifi-
cant improvement in the quality of the value function
approximation, especially for the BPC policy (10%).
This can be observed in Table 7 where we performed
calculations for various two-leg networks.

In practice, however, it is too expensive to com-
pute and store all the H -values. In order to implement
this idea effectively, we suggest storing H -values from
several insightful a priori simulations, and interpo-
lating these in an online fashion (as needed), for the
“second time around” policy. It is an interesting idea
to investigate what types of preprocessing simulations
would provide an insightful information database.

Simulations Using Monte Carlo Demand Estima-
tion. We run a simplified version of the Monte Carlo
policy described in §3.3, that assigns the same weights
to all the trials and defines:

OCMC
j �n� t�=

1
r
·
r∑
i=1

OCj �n� D̂t−1
i ��

When the number of trials r is large enough (so we
have a reasonably good MC-demand estimate), this
policy provides a visible improvement (1�6%) over
the original version, as can be observed from the fol-
lowing computational examples. However, when the
number of trials is not large enough (30 or less),
we have observed that this policy delivers a poor
performance. The tables below provide estimates for
the value of different models (LP, PILP, MC, CEC,
BPC), as well as standard deviations, lower and upper
bounds obtained through simulation. We also calcu-
late the estimated average ratio P between different
models, as well as the standard deviation, minimum,
and maximum ratio observed during simulation. One
can observe for instance that the ratio CEC/BPC is
always ≥1, whereas the ratio MC/PILP is surprisingly
high, ranging between 96%–99%. The computational
results presented in Table 8 show an improvement of
up to 20% of MC over CEC.
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Table 6 Increasing Bias in Arrival Rates

T DP LP CEC BPC LPb CECb BPCb LP2b CEC2b BPC2b

10 190 190 190 190 196	227 190 190 202	454 190 190
20 380 380 380 380 387	9062 380 380 395	8123 380 380
30 568	0307 570 567	9671 568	0053 578	9176 567	958 568	0149 587	8351 567	9583 568	0271
40 713	9429 740 712	8882 711	4275 751	7866 712	6471 711	3734 763	5732 712	654 710	6125
50 784	8309 815 782	7964 745	0979 818	9707 782	1006 743	3085 822	9414 781	6062 737	3545
60 819	8745 845 817	9585 749	6329 849	1515 817	5189 748	0799 853	303 816	9229 742	664
70 841	6218 855 839	8851 749	8441 855 839	6463 748	1471 855 839	3091 742	664
80 851	0686 855 850	2119 749	8441 855 850	1653 748	1471 855 850	1115 742	664
90 854	0811 855 853	8794 749	8441 855 853	8777 748	1471 855 853	8765 742	664
99 854	7912 855 854	7523 749	8441 855 854	7523 748	1471 855 854	7523 742	664

T DP LP4b CEC4b BPC4b LP� CEC� BPC�

10 190 214	9079 190 190 191	8341 190 190
20 380 411	6247 380 380 361	348 380 380
30 568	0307 605	6702 567	9585 568	0273 671	4161 567	9394 567	8188
40 713	9429 787	1465 712	5613 706	1965 707	4845 712	1564 708	9488
50 784	8309 830	8828 780	0541 723	385 801	1911 779	7808 752	618
60 819	8745 855 815	0074 728	399 831	9429 815	4683 757	3472
70 841	6218 855 838	5854 728	399 855 838	5076 757	5589
80 851	0686 855 850	0349 728	399 855 849	9272 757	804
90 854	0811 855 853	8752 728	399 855 853	8605 761	142
99 854	7912 855 854	7523 728	399 855 854	7513 763	8937

Note. �N2�: Data: N= �19�19�; R= �25�20�35�; p= �0	3�0	4�0	1�, b= �0	07�−0	05�0	03�.

6.2. Computational Performance Under
Cancellations and Overbooking

The objective in this section is to understand the rela-
tive performance of BPC and CEC in an environment
with cancellations and overbooking. We considered a
booking horizon of 15 periods for a hub and spoke
network with five cities and two classes, of the type
�N4�2�. The arrival process for the highest fare class
is nonhomogeneous Poisson with rate 0.5 for Peri-
ods 1–13 and 5 for Periods 14, 15. The arrival pro-
cess for the lowest fare class is homogeneous Poisson
with Rate 3. For simplicity, we kept the fare of the
higher class in a single-leg itinerary equal to $100 and
of the lower class equal to $80. We varied the fare of
two-leg itineraries. After experimentation we identi-
fied the following parameters that affected the relative
performance of CEC and BPC: We varied the follow-
ing parameters: (a) The overbooking penalty (Cj ), (b)
the probability of cancellation (pc), and (c) the fare of
a two-leg itinerary compared to a single-leg itinerary.

The implementation was done in C and the algo-
rithms were run on a Dell Pentium III 600MHz oper-
ating under Linux.

In Table 9, we report the behavior of CEC and
BPC as a function of the overbooking penalty. We
observe that CEC leads to consistently higher revenue
by approximately 1%.

In Table 10, we report the behavior of CEC and BPC
as a function of the cancellation probability. With the
exception of very high cancellation rate (0.30), CEC
outperforms BPC.

In Table 11, we report the behavior of CEC and BPC
as a function of the ratio 2 of the fare of a two-leg
itinerary versus the fare of a single-leg itinerary. CEC
outperforms BPC, but the level of overperformance
decreases as 2 ranges from 1 to 2.

7. Conclusions
In this paper, we have presented several models and
algorithms for solving the stochastic and dynamic
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Table 7 Rollout Heuristics

T LP DP CEC BPC R(CEC) R(BPC)

�N2	1�

1 19	5 19	5 19	5 19	5 19	5 19	5
10 195 195 195 195 195 195
20 390 390 390 390 390 390
30 585 585 585 585 585 585
40 780 780 780 780 780 780
50 975 975 975 975 975 975
60 1�170 1�170 1�170 1�170 1�170 1�170
70 1�365 1�365 1�365 1�365 1�365 1�365
80 1�560 1�559	5 1�559	5 1�559	5 1�559	5 1�559	5
90 1�755 1�745	7 1�745	4 1�745	7 1�745	6 1�745	7
100 1�950 1�897	5 1�896	4 1�897	1 1�897	2 1�897	4
110 2�020 1�998	9 1�996	6 1�993	4 1�998 1�995	5
120 2�090 2�064	6 2�061	6 2�031	6 2�063	2 2�042	2
130 2�140 2�110	6 2�107	3 2�021	9 2�108	9 2�052	8
140 2�170 2�145	5 2�140	5 2�018	3 2�143 2�104	2
150 2�200 2�175	7 2�167	6 2�018	9 2�172	9 2�163	9
160 2�230 2�202	4 2�192	9 2�019	3 2�199	6 2�197	2
170 2�250 2�222	8 2�216	9 2�019	4 2�220	6 2�217	4
180 2�250 2�236	2 2�233 2�019	4 2�234	8 2�230	2
190 2�250 2�243	8 2�242	3 2�019	4 2�243	1 2�238	1
200 2�250 2�247	5 2�246	9 2�019	4 2�247	2 2�241	9

�N2	2�

1 19 19 19 19 19 19
10 190 190 190 190 190 190
20 380 380 380 380 380 380
30 570 568	0307 567	9671 568	0053 568	0285 568	0258
40 740 713	9429 712	8882 711	4275 713	8018 713	2517
50 815 784	8309 782	7964 745	0979 784	3939 774	4301
60 845 819	8745 817	9585 749	6329 819	2368 815	8581
70 855 841	6218 839	8851 749	8441 840	6865 837	072
80 855 851	0686 850	2119 749	8441 850	6009 846	4442
90 855 854	0811 853	8794 749	8441 853	9772 848	7245
100 855 854	8245 854	7925 749	8441 854	8099 849	8084

Note. �N2	1�: N = �50�50�, R = �25�20�35�, p = �0	4�0	3�0	1�; �N2	2�: N = �19�19�, R =
�25�20�35�, p= �0	3�0	4�0	1�.

NRM problem. We proposed a new efficient algo-
rithm, based on a certainty equivalent approximation
and compared it with the widely used bid-price con-
trol policy. This policy conceptually improves the cur-
rent NRM-approach based on additive bid pricing,
by using more insightful, piecewise linear approxima-
tions of opportunity cost. It is just as easy to compute,
but as opposed to BPC, it is more “robust” in the fol-
lowing sense:

• The CEC opportunity cost estimates are uniquely
defined at each state, whereas for additive bid prices,
there may be several dual optimal solutions.

• The CEC policy is optimal in the deterministic
regime, whereas BPC is not.

• Computationally we observe that the CEC pol-
icy outperforms the BPC policy when the load factors
(the ratio of expected demand to available capacity)
tend to be large. When the load factor is small, both
policies perform optimally. There is a critical range
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Table 8

�N2	1� LP PILP MC CEC BPC P AvgP StdP MinP MaxP
EXP 2�200 2�191	2 2�170 2�162	8 2�161	6 CEC/BPC 1	0006 0	0035 0	9931 1	0074
Std 0 44	48 50	45 52	41 54	19 CEC/PILP 0	987 0	0093 0	9569 1
LB 2�200 2�070 2�035 2�000 2�000 MC/PILP 0	9903 0	0084 0	9645 1
UB 2�200 2�250 2�250 2�250 2�240 MC/CEC 1	003 0	0067 0	9909 1	0225

�N2	2� LP PILP MC CEC BPC P AvgP StdP MinP MaxP
EXP 225 215 208 205 202	5 CEC/BPC 1	01 0	028 1 1	075
Std 0 10	55 16	53 18	7 19	76 CEC/PILP 0	9521 0	0498 0	8537 1
LB 225 195 185 175 175 MC/PILP 0	9664 0	038 0	9024 1
UB 225 225 225 225 225 MC/CEC 1	016 0	034 1 1	0857

�N2	3� LP PILP MC CEC BPC P AvgP StdP MinP MaxP
EXP 8�000 7�922 7�785 7�771 7�766 CEC/BPC 1	0007 0	011 0	975 1	02
Std 0 224	3 238	7 285	2 283	8 CEC/PILP 0	9808 0	0166 0	94 1
LB 8�000 7�500 7�200 7�050 7�050 MC/PILP 0	9828 0	017 0	939 1
UB 8�000 8�600 8�400 8�500 8�400 MC/CEC 1	002 0	0184 0	9615 1	0425

�N4� LP PILP MC CEC BPC P AvgP StdP MinP MaxP
EXP 6�800 n.a. 6�694	4 6�588 6�568	8 CEC/BPC 1	0029 0	0051 0	9935 1	0117
Std 0 n.a. 214	44 213	73 215 MC/CEC 1	01624 0	0127 0	9908 1	0421
LB 6�800 n.a. 6�260 6�140 6�160
UB 6�800 n.a. 7�065 6�950 6�930

Note. �N2�: N= �50�50�, R= �25�20�35�, p= �0	3�0	4�0	1�, T = 150, NT = 100, r = 50; �N2	1�: N= �5�5�, R= �25�20�35�, p= �0	3�0	4�0	1�, T = 20, NT =
10, r = 50; �N2	3�: N= �20�20�, R= �25�20�35�, p= �0	2�0	3�0	5�, T = 50, NT = 50, r = 50; �N4�: N= �50�50�100�100�, R= �20�20�50�30�60�40�45�55�,
p= �0	15�0	15�0	15�0	15�0	1�0	1�0	1�0	1�, T = 200, NT = 50, r = 60.

when the load factor is close to one, where it is not
clear which policy provides a better performance, but
the difference between the two is very small. More-
over, computational exercises show that the value of
the CEC policy is very close to the value function DP,
and to the perfect information upper bound PILP.

• The CEC outperforms the BPC policy in an
environment where cancellations and overbooking
are present under various scenarios of cancella-
tion probabilities, disparity in fares and overbooking
penalties.

Table 9 The Expected Revenue in 200 Simulation Runs as a
Function of the Overbooking Penalty

Cj 100 110 120 130

CEC 24,480 24,450 23,975 23,890
BPC 22,355 22,270 21,920 21,567

Note. The cancellation probability was 0.01 and the fare of a two-leg
itinerary was equal to the fare of a single-leg itinerary.

• The CEC policy is significantly more robust than
BPC to bias and (correlated) noise in the demand
forecast.

The following extensions provide insights towards
further developments:

—The rollout procedure produces an important
improvement in the value of both policies, virtually
closing the optimality gap.

—The Monte Carlo simulation procedure incor-
porates demand variability, and produces a signific
ant improvement in the value of the CEC policy
when the number of trials is sufficiently large.

Table 10 The Expected Revenue in 200 Simulation Runs as a
Function of the Overbooking Penalty

pc 0.05 0.10 0.20 0.30

CEC 22,382 21,095 18,760 11,280
BPC 19,680 20,160 17,262 12,960

Note. The overbooking penalty was $130 and the fare of a two-leg
itinerary was equal to the fare of a single-leg itinerary.
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Table 11 The Expected Revenue in 200 Simulation
Runs as a Function of the Ratio � of the
Fare of a Two-Leg Itinerary Versus the
Fare of a Single-Leg Itinerary

� 1 1.5 2

CEC 22,522 23,400 24,457
BPC 20,587 21,437 24,187

Note. The cancellation probability was 0.1 and the over-
booking penalty $130.
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